BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

w (101010101

m
" avava-" |1 TUTHT
TaTwTul [mam [TTH T

MUEGYETEM 1782

FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS
SOFTWARE ENGINEERING

|]

Extending Python Web Services

Andras Veres-Szentkiralyi

<vsza(@vsza.hu>

THESIS STUDY

Consultant:

Balazs Simon
PhD student

December 2011

mailto:vsza@vsza.hu

UEGYETEM 1782

DIPLOMATERY FELADAT
o
Veres-Szentkiralyi Andras “
szigorl6 MSc mérnok informatikus hallgatd részére W,
\
\J 17/

Python nyelvii webszolgaltatasok kibdvitése

Napjainkban egyre fontosabba valik a kiilénb6z6 platformokon futé heterogén informatikai
rendszerek Osszekapesoldsa véllalati és kozigazgatdsi szinten is. A Szolgéltatds Orientalt
Architektira (SOA) egy olyan paradigma, amely megfogalmazza az alapvetd elveket e
feladat elvégzéséhez. A webszolgaltatdsok technoldgidja lehetévé teszi, hogy ezeket az
elveket megvalositsuk és szabvanyosan egyiittmiikdd6 rendszereket hozzunk létre. A Python
kornyezet azonban meglehetdsen szerény tdmogatdssal rendelkezik webszolgaltatasok
tekintetében.

A jelolt feladata a SOA és a webszolgéltatdsok technologidjanak megismerése, valamint
Pythonhoz egy olyan bdvitmény kidolgozédsa, amely segitségével konnyen lehet fejlett
webszolgaltatasokat késziteni. Ezen beliil a jelolt feladata, hogy

ismertesse a SOA és a webszolgaltatdsok technologidjat

vizsgélja meg a fontosabb Python nyelvii konyvtarakat, amelyek alkalmasak
webszolgaltatasok készitésére, tovabba ismertesse ezek elényeit, hatranyait és
hianyossagait

tervezzen meg egy olyan bévitményt valamelyik Python konyvtarhoz, amely alkalmas
fejlett webszolgaltatasok készitésére

valdsitsa meg a szoftvert

tesztelje a megoldast

Osszegezze a fejlesztés és a tesztelés soran nyert tapasztalatokat

Tanszéki konzulens: Simon Balazs

Beadasi hataridé: 2011. december 9.

Zardvizsga targyak:

Budapest, 2011. szeptember 26.

1. Metamodellek a szoftverfejlesztésben BMEVIIIM228
2. Objektumorientalt fejlesztés BMEVIIIM140

egyetemi tanar, tanszékvezetd

Budapesti Miiszaki és Gazdasagtudomanyi Egyetem 1117 Budapest, Magyar tuddsok kortia 2. 1. ép. 317.

Villamosmérnoki és Informatikai Kar Postacim: 1521 Budapest, Pf.. 91.
Iranyitastechnika és Informatika Tanszék Tel: 463-2699, Fax: 463-2204, http:/www.iit bme.hu

Nyilatkozat

Alulirott Veres-Szentkirdlyi Andrds, szigorl6 hallgato kijelentem, hogy ezt a diplomatervet
meg nem engedett segitség nélkiil, sajat magam készitettem, csak a megadott forrdsokat
(szakirodalom, eszk6zok, stb.) haszndltam fel. Minden olyan részt, amelyet sz6 szerint,
vagy azonos értelemben, de dtfogalmazva mas forrdsbdl atvettem, egyértelmtien, a forrds
megadasival megjeloltem.

Hozzajarulok, hogy a jelen munkdm alapadatait (szerz6(k), cim, angol és magyar
nyelvi tartalmi kivonat, készités éve, konzulens(ek) neve) a BME VIK nyilvanosan hoz-
zaférhet6 elektronikus formdban, a munka teljes szovegét pedig az egyetem belsé halo-
zatén keresztiil (vagy autentikélt felhaszndlok szamdéra) kozzétegye. Kijelentem, hogy a
benytjtott munka és annak elektronikus verzidja megegyezik. Dékani engedéllyel titkosi-

tott diplomatervek esetén a dolgozat szovege csak 3 év eltelte utdn valik hozzaférhet6vé.

Veres-Szentkirdlyi Andrds
hallgaté

Contents

Kivonat

Abstract

Magyar nyelvii osszefoglalas

Introduction

1 Service-Oriented Architecture and Web Services

2

1.1
1.2
1.3
1.4

SOA history and principles

Web Services
SOAP and friends
Advanced web services . .
1.4.1 Introduction
142 Security

Existing Python SOA solutions

2.1

2.2

AboutPython
2.1.1 Language
2.1.2 Runtime e e
2.1.3 Libraries e
Python SOA solutions
22.1 Introduction.
222 SOAPy e
2.2.3 Zolera SOAP Infrastructure
224 soaplib/rpclib
225 SUDS . . . e
226 sec-wallo L

2.277 Common problems

3 Opportunities and internals of SUDS

3.1

Introduction

Y

vii

viii

ix

10
10
11

12

Andras Veres-Szentkiralyi Extending Python Web Services

3.2 Internal structure 12
3.2.1 Client proxy instantiation 12

3.2.2 Instantiation of complex objects 14

3.2.3 Service method invocation 14

3.24 Document Object Model of SUDS 15

3.3 Opportunities e e e e e e e 16
3.3.1 Current WS-Security implementation 16

332 Pluginsystem 17

4 Improving SUDS 18
4.1 Completing the implementation of UsernameToken 18
4.2 Implementing digital signatures — SudsSigner 18
4.2.1 Internal structureo 18
422 Componentsused 19

4.2.3 The Pythoncomponent 20

4.3 Testing and verification—Arenao 22
4.3.1 Internal structure 22

432 Outlineof processing 23

43.3 Generationofkeys L oo 24

4.3.4 Usage during the development 25

S Results 26
5.1 Measurement Lo e 26
5.1.1 Methodology 26

5.1.2 Environment 27

5.2 Analysiso 28
5.2.1 Network traffic L0 oL 28

5.2.2 Proxyinitialization Lo 29

5.23 Invocationround-triptime 29

5.3 Architectural differences L Lo 31
5.3.1 Runtimeenvironment. 31

5.3.2 Use of native components 31

6 Summary 32
6.1 Resultssummary 32
6.2 Future development opportunities 32
6.2.1 Short-term: taking advantage of HTTP keep-alive 32

6.2.2 Mid-term: implementing XML encryption. 33

6.2.3 Long-term: wider cryptographic backend support 33

Andras Veres-Szentkiralyi Extending Python Web Services

Bibliography 34
Appendix 37
A.1 Availability of relevant sourcecode 38
A1l SUDS . . . o 38

A.1.2 SudsSigner L 38

A13 PyXMLSec 38

List of Figures 39
List of Tables 39
Abbreviations 41

vi

Kivonat

,,En tavolabbra lathattam, de csak azért, mert oriasok vallan alltam” — Isaac Newton tobb
mint 300 éves lizenete jOl illeszthet6 a szolgaltatdsok egyiittmiikodésének kialakitdsa mo-
gott rejlé motivacioval. Ahogy egyre fejlettebb szolgaltatdsok keriiltek a piacra, a ver-
senyel6ny megtartdsanak egy j6 mdodja ezek Osszekapcsoldsa, ezaltal djszerl, Osszetett
termékek létrehozdsa. A technoldgia folyamatos fejlodése egyszerre teremtett sok-sok
eltérd platformot és az ezek kozti hatékony egyiittmiikodést lehetdvé tévd szabvanyokat,
mint a DCOM, a CORBA és az XML-RPC.

A babeli zlirzavarra megoldds a webszolgaltatdsok technoldgidja, mely a SOAP-ot
haszndlja az iizleti lizenetek szabvanyos kddoldséra, és a vilaghdlé kapcsan mar bevalt,
egyszerl és kiforrott szallitisi mechanizmusok segitségével juttatja el azokat a cimzett-
hez. Bér az Internet nyiltsdga végtelen lehetGségeket rejt, megvannak a veszélyei is, igy
tovabbi szabvanyok jelentek meg, tobbek kozott az tizenetek hitelességének biztositisara.

Bar a nyilt szabvanyok, mint a SOAP, WSDL ¢és tarsai egy platform-fiiggetlen meg-
oldést alapozhattak volna meg, ezek fejlesztdi kornyezetek korében élvezett timogatasa
kozel sem egyenletes. Példaul a Python, egy valodi k6zosségi projekt, a sziikséges mi-
nimumndl alig nydjt tobb tdimogatast fejlett SOAP webszolgéltatdsok készitéséhez, igy
az ezt igényld projektek korében kevésbé népszerii valasztds, egyéb pozitiv tulajdonsdgai
ellenére.

Diplomatervemben bemutatom a Szolgaltatds Orientdlt Architektdra torténetét és el-
veit, majd részletezésre keriilnek a webszolgaltatdsok, azon belil is a fejlettek. A Py-
thon kornyezetrdl is lehull a lepel, tobbek kozott dttekintem a jelenleg rendelkezésre 4ll6,
SOA megolddsok készitésére alkalmas konyvtarakat mind szolgdltatdsi, mind fogyasz-
téi oldalrél. A felsoroldst egy Osszegzés zdrja, mellyel célom ravilagitani a fejlesztések
sziikségességére.

Az altalam tovéabbfejlesztésre kivalasztott konyvtar, a SUDS bemutatdsa soran mind
a magas szintl fejleszt6i interfész, mind a belsé miikodés attekintésre keriil, rdmutat-
va a bovités kiindulopontjaként haszndlhat6 csonka részekre. A bdvitményre vonatkozé
terveim €s azok megvaldsitdsdnak bemutatdsat kovetéen szé esik a tesztkornyezetrdl is,
melynek elkészitésével az volt a célom, hogy bebizonyosodjon, a fejlesztés eredménye
teljesiti a legfontosabb kovetelményt: az interoperabilitdst. Végiil a megoldds szinvonala
a felhaszndlt id6 és hédlézati forgalom mértéke alapjan keriilt értékelésre, a diplomatervet

pedig tapasztalataim 6sszegzése és tovabbfejlesztési lehetdségek zarjak.

Abstract

“If I have seen further it is only by standing on the shoulders of giants” — Isaac Newton’s
more than 300-year-old message is a great parallel with the motivation behind service
interoperation. As more advanced services were developed, one way of improving them
was to interconnect them to combine their powers into more exciting products. Continu-
ous advancement of technology created diverging platforms, and simultaneously provided
standards allowing efficient co-operation such as DCOM, CORBA and XML-RPC.

One of the solutions for this Babel-like chaos were web services using SOAP to en-
code business messages in a standardized way and to reuse simple and mature transport
mechanisms proven useful by the World Wide Web to carry them between the recipients.
While the openness of Internet offers vast opportunities, it also has its dangers, which
caused additional standards to be developed, among others, for message authenticity.

Although the open standards of SOAP, WSDL and others could have been the foun-
dation of a platform-independent solution, not every environment used for software de-
velopment supports it equally. Python, a truly community-driven project is one of them,
providing little more than minimal support for advanced SOAP web services, making it a
less favored selection for projects needing this capability, despite its unique treats.

In this thesis, the history and principles of Service-Oriented Architecture are pre-
sented, then the scope is focused on web services, and further on to advanced ones. Then
the Python environment is introduced, including the current libraries for implementing
SOA solutions both on the service and consumer side. This part ends with a quick sum-
mary that makes the reasons for improvements clear.

My selection for improvement, SUDS is presented next, looking at both its high-level
view and its internals, showing the possible stubs awaiting improvement. The plans and
implementation details of my enhancements are introduced right after, including a testbed
to make sure the new features fulfill the most important requirement: interoperation. In
the end, the whole solution is evaluated using measurements of both timing and network

traffic, concluding the thesis with my observations and ideas for future improvement.

Magyar nyelvi osszefoglalas

A SOA megjelenése mogotti 6 motivacidt a XX. szdzad végére kialakult informatikai
vildg interoperabilitdsi, djrafelhasznilhatdsagi és egyéb problémadinak felszamoldsa je-
lentette. Egy idedlis szolgdltatas-orientdlt megoldas elemei lazan csatoltak, és a koztiik
torténd kommunikacié jol definidlt, szabvanyos médon zajlik — ez a paradigmavaltas szé-
pen illeszkedik a fiiggvények, objektumok, komponensek alkotta ldnc végére. Mint neve
is mutatja, a SOA inkabb elveket fogalmaz meg, igy megvalositas is sziiletett; a Micro-
soft DCOM-ja és az OMG CORBA-ja is prébalt egyiittmiikodési lehetdséget biztositani
komponensek és a szolgaltatdsok kozott. E korai megolddsok alkalmazdsdnak azonban
megvoltak a maguk korldtai; a DCOM értelemszertien Windows platformot igényel, a
CORBA-t implementdlé ORB-ok esetében pedig az egyes megolddsok kozti egyiittmii-
kodés nem mindig problémamentes.

Tovabbi fejtorést okoz, hogy bizonyos szintii egylittmiikodés felett a kommunikécio-
nak a nyilt Interneten kell zajlania, ahol a kdozvetlen TCP kapcsolatokon keresztiili binaris
adatcsere az iizemeltetk ,,rémdalma”. Id6kozben megjelent a vildghald, magéval hozva
a HTTP-t mint kifejezetten Interneten keresztiili miikodésre tervezett protokollt, mely-
nek forgalma a hédlézathataron proxy-kkal szilirhetd €s atalakithat. Szabadon értelmezve
minden ilyen, HTTP felett elérhetd szolgdltatast webszolgaltatdsnak tekinthetiink, az elsé
ilyen az XML-RPC volt — nevébdl ered6 médon tavoli eljardshivds szemantikdjat kovet-
ve. A Microsoft berkein beliil azonban nem elégedtek meg ennyivel, és tovabbi fejlesztés

soran létrehoztdk a SOAP-ot, mely els6 ranézésre nem sokban kiilonbozik el6djétol.

A kiadott szabvény kezelését dtvette a W3C, a SOAP pedig a webszolgéltatasok egyik
elterjedt kddoldsava valt. Szintén XML alapon kialakult a WSDL, mely képes a szolgal-
tatds interfészét egy gépi médon feldolgozhaté formaban leirni. A fejlédés folytatdsaként
tovabbi — pl. biztonsidgot, megbizhatdsdgot javitd — szabvanyokkal egésziilt ki a csalad,
az ily médon emelt szinvonald szolgaltatdsokat nevezziik fejlettnek. Ezek el6nye, hogy
szabvanyos modon lehetséges magas mindségli szolgéltatasok 1étrehozdsa, mikdzben a
kod tovdbbra is az iizleti logikara fokuszal.

A biztonsdg az egyik teriilet, amely tobbé-kevésbé elterjedt fejlett webszolgaltatds
szabvéanyokkal lefedésre keriilt. Bar HTTP feletti protokoll biztonsdga esetében logikus-
nak tlinhet a HTTPS haszndlata, sokszor el6fordul olyan halézati kornyezet, ahol proxy-

1X

Andras Veres-Szentkiralyi Extending Python Web Services

kon is 4thalad a forgalom, igy ez a megoldds nem alkalmas végponttdl végpontig terjedd
biztonsdgos csatorna létrehozdsdra. Az IBM, a Microsoft és a Verisign 2002-ben kifej-
lesztett egy szabvanyt, melynek végsd formdjat 2004-ben adta ki az OASIS, WS-Security
néven. E megoldas képes a kérést indit6 felhaszndld azonositdsdra, valamint iizenet egy

részhalmazanak elektronikus aldirdsdra és/vagy titkositdsara is.

A Python besorolédsat tekintve interpretdlt, objektum-orientdlt programozasi nyelv,
mely a hangsilyt az olvashatésigra €s Ujrafelhaszndlhatésdgra helyezi. A nyelv terve-
z€si €s tovabbfejlesztési elveit jOl Osszefoglalja egy egyszerl kifejezés, melybdl elényei
és hétranyai is levezethetdk: ,,futtathaté pszeudokéd” — azaz egy dtlagos Python kédrész-
let kelléen explicit ahhoz, hogy barki (akdr Python tudds nélkiil is) 4tldssa mikodését.
A CPython referencia implementéacié mellett 1éteznek projektek Python forrdskédbdl Ja-
va és .NET b4jtkod eldallitdsdra, valamint a Nokia tdmogatdsdval elkésziilt egy port a
Symbian platformra is.

A letolthetd Python disztribiciok egy viszonylag teljes konyvtarkészlettel érkeznek,
beépitett megoldast adva a legtobb, fejlesztok 4ltal igényelt célra, mint fajlok, hildzati
kapcsolatok €s kiillonboz6 formatumok kezelése. Ezek implementacidja késziilhet tisz-
tdn Python nyelven — mely esetben az Osszes fent emlitett platformon miikodSképes a
megoldas moédositds nélkiil — vagy a C/C++ API hasznalataval. Utobbi megoldas hasz-
ndlataval nativ API-k is elérhet6vé tehet6k Python objektumok szintjén, az ilyen adapter

konyvtarakat bindingnek nevezziik.

A Pythont koriilvevo igazi szabad szoftveres kozosség leginkdbb olyan konyvtarakat
készit kedvenc kornyezetéhez, mely vagy kiillonosen érdekli, vagy éppen sziiksége van r4,
ennek kovetkezményei kedvezdk az alapkonyvtirak szempontjabol — kevésbé jok azon-
ban a SOAP-ranézve. A tdavoli eljarashivas legtobb modjdra létezik méar Python megoldas,
azonban a SOAP tdmogatdsa megrekedt egy bizonyos szinten — az egyszer(i alappéldak
miikodnek, viszont a megvaldsitasok korldtaibdl sejthet fejleszt6je igényszintje.

A két ,,nagy oreg” a SOAPy és a ZSI, 4m ezek madra jelentSsen vesztettek fényiikbdl,
el6bbi inkompatibilis is frissebb Python kiaddsokkal, utébbi pedig bar miikodik, hasz-
nélata nehézkes, fejlesztése gyakorlatilag karbantartdsra korlatozédik. Ujabb megoldas
a soaplib — rpclib paros, mely inkabb szolgaltatdsok készitésére alkalmas, arra viszont
nagyon kényelmesen haszndlhaté. J6 parja a SUDS, mely inkabb kliensoldali funkciona-
litdsban jeleskedik, hasznélata kényelmes €s intuitiv, jol segiti a fejlesztt mind prototipus
elkészitésében, mind kész rendszerben haszndlva. Kakukktojas a sec-wall, mely szolgal-
tatdsok ,.fejlesztését” teszi lehet6vé olyan szempontbdl, hogy proxy-ként egy szolgdltatas
€s a kliensek kozé allitva fejlett tulajdonsdgokkal ruhdzza fel el6bbit, a biztonsiagot és a

teljesitményt szem eldtt tartva.

Szakmai gyakorlat sordn a sec-wall szoftver fejlesztésében vettem részt, igy diplo-

matervemben a kliensoldalra koncentrdlva a SUDS-ot kezdtem el tanulmdnyozni, mely

Andras Veres-Szentkiralyi Extending Python Web Services

jelenleg a Python kornyezet de facto SOAP kliens megolddsanak tekinthetd. Miikodési
modja jé kompromisszum a kényelmes és gyors prototipus épités €s a hatékony miikddés
kozott —egy WSDL cimének birtokaban proxy objektumot hoz 1étre, majd az ezen végzett
metddushivasok hatdsara a Python dinamikus metddusfeloldasi lehetdségeit kihasznalva
generdlja a SOAP kéréseket. Az Osszetett tipusok példanyositdsa és a kodgeneralas hid-
nya kozti ellentmondést a Factory tervezési mintdval oldja fel, a kliens objektumt6l név
szerint kérhetd6 a WSDL-ben (vagy az 4ltala hivatkozott sémdkban) definidlt osztdlyok
létrehozasa.

A dokumentéci6 és a forraskod tanulményozdsaval felfedeztem a SUDS belsé felépi-
tését, kezdve a kliens proxy létrehozasitol a metddushivasokon keresztiil a csatornamo-
dellig. Kideriilt tobbek kozott, hogy torténelmi okokbdl példaul sajait DOM implementa-
ciét haszndl a konyvtar, melynek cseréje kompatibilitdsi okokbdl jelenleg lenne kifizets-
dé. Kiprobéltam a WS-Security tdmogatast is, mely 1étezik ugyan, 4m igencsak korléto-
zott. Az azonositdsra haszndlhaté UsernameToken tdmogatds hidnyos volt €s a szabvéanyt
sem tartotta be teljesen, digitdlis aldirdsra pedig egyaltalan nem volt mdéd. Szerencsére
az utobbi verzidkban keriilt egy plugin megoldds is a SUDS-ba, melynek haszndlatdval
kiils6 komponensekkel b&vithetd a megoldds tuddsa anélkiil, hogy a kédot médositani
kellene. Az ily médon betoltott €s regisztralt kiilsé komponensek értesitést kaphatnak és
befolydsolhatjak a miikodést a kliens életciklusdnak 0sszes fontosabb pontjan, igy idedlis

megoldds a funkcionalitds bovitésére.

Py

A fejlesztés els6 1épéseként szabvanykovetdvé tettem a UsernameToken implementa-
ciot, megoldva a digest médu jelszokiildést is, melyet a kordbbi verzidban a felhasznélo-
nak kézzel kellett megadnia. Ehhez természetesen a konyvtar kodjat kellett modositani,
igy azonban legaldbb kiismertem magam a WS-Security modulban.

A masodik, nagyobb 1épés a digitdlis aldirds lehet6ségének megteremtése volt. En-
nek megvaldsitasdra olyan plugint készitettem, mely kozvetleniil az tizenet elkiildése el6tt
kapja meg a vezérlést, igy bemenetként is nyers bdjtfolyamot kap, kimenete pedig kozvet-
leniil a hdlézatra keriil. E tervezési dontés elénye, hogy nem kell a SUDS sajat DOM imp-
lementacidjanak korlétait figyelni, valamint a hasznalhat6 konyvtirak halmazét is boviti.
Mivel nem akartam a kereket tjra feltaldlni, nekidlltam keresni mar 1étez6 konyvtarakat,
melyek legaldbb a funkcionalitds egy részét készen tartalmazzdk, kiemelt figyelemmel
kezelve a nativ kodui megolddsokat.

Az XML feldolgozasanak céljara a nativ koéda libxml2 konyvtéarat, Python részrdl pe-
dig a python-libxml2 — LXML parost valasztottam. A nativ alapkonyvtar gyors, elterjedt-
sége miatt megbizhaténak tekinthetd, és az OASIS XML tesztjeit kivétel nélkiil teljesiti.
El6bbi Python binding teljes funkcionalitdsa elérhet6vé teszi, cserébe az API nagyban C

jelleget hordoz magédban, utébbi egy részhalmazt ad csak a fejlesztd kezébe, cserébe azt

X1

Andras Veres-Szentkiralyi Extending Python Web Services

magasabb szintli OO rétegbe csomagolja — jo példa a kiilonbségre a hibdk egyik esetben
visszatérési értékkel, mésik esetben kivétellel valo jelzése.

Kriptografiai feladatok megoldasédra az OpenSSL konyvtarat €s pyOpenSSL bindingjét
valasztottam, mivel j6l karbantartott, szintén elterjedt implementaciok, el6bbi a FIPS 140-
2-nek is megfelel. Kozvetleniil jelenleg kizdrélag arra a célra hasznidlom, hogy PEM
fajlokat tudjon beolvasni, mégis tapasztalataim alapjén ez az egyetlen konyvtar, ami ezt
megfelelGen tdimogatja.

A feladat 1ényegét, az XML digitdlis aldirdst az XMLSec konyvtarra és PyXMLSec
bindingjére biztam. El6bbi mai napig jol karbantartott szoftver, libxml2-t és OpenSSL-
t haszndl részfeladatokra, bar utébbi helyett alternativ konyvtéarakat is tdmogat. Sajnos
azonban a Python bindingek még 2003-ban késziiltek egy francia projekt kapcsan, 2005
6ta nem fejlesztik, ennek ellenére azonban miikodésre birhatd, a teljes — dltalam igényelt —
funkcionalitdshoz egy, a projekt levelezdlistdjara 2010-ben érkezett patch-re volt sziikség.
A dokumentécio hidnyossdgai miatt haszndlata kisérletezést igényel, azonban tapasztala-
taim alapjan egyeldre ez az egyetlen Python megoldas, amely valéban képes XML aldird-
sok készitésére — létezik tobb, kivaltasara torekvo projekt, de mind tobbé-kevésbé messze
all még a teljességtdl.

Mint fentebb emlitettem, a megvaldsitott Python komponens bementként a mar bajt-
sorozattd szerializdlt SOAP kéréshez fér hozza, ebbe eldszor LXML segitségével beszirja
a WS-Security 4ltal el6irt digitélis aldirdsi struktuirét, iiresen hagyott értékekkel. Ezt ko-
vetden az XML ismét szerializdldsra keriil, majd az eredményen az XMLSec konyvtér
elvégzi a konkrét aldirist, a SOAP ismerete nélkiil, kizdr6lag a szdmadra el6készitett ,,bi-
anko” strukturdt haszndlva. Az XMLSec libxml2 fan képes dolgozni, igy ezzel torténik a
beolvasds, majd az aldirast kovetden a szerializacié is, melynek kimenetével lecserélésre
keriil az eredeti kérés, igy a halézaton mdr egy aldirt kérés keriil tovabbitdsra. A nativ
eroforrdsok hatékony haszndlata érdekében ,,becsomagoltam™ a libxml2 altal épitett fat
€s az XMLSec alairasi kontextus objektumat is, mivel a Python szemétgyijtése ilyenkor

nem kielégits.

Egy elkésziilt SOA megoldds természetesen csak akkor ér valamit, ha képes egyiitt-
miikodni mas megvaldsitdsokkal is. Ennek tesztelésére egy sajat kornyezetet épitettem
Arena néven, mely referencia implementacioként egy Apache CXF webszolgéltatast ké-
pes létrehozni dinamikusan, majd valaszthatéan szintén CXF vagy SUDS klienssel hivja
meg annak tesztelési célu metddusat. A konfigurdcid egyszerl szoveges, JSON forma-
tumu fijlokkal végezhetd, a kulcsokat pedig egy make alapu rendszerrel lehet generdlni
a kiilonbozd komponensek altal elvart formatumban, igy elkeriilhetdk a lejar6 statikus
tanusitvanyok okozta problémék.

Az alairé komponens elsé miikodoképes véltozatdnak elkésziilte utdn ezt a tesztkor-

nyezetet haszndltam a mérések elvégzésére is, ennek megfelelGen tdimogatdst adtam hozza

Xil

Andras Veres-Szentkiralyi Extending Python Web Services

kiilonb6z6 konfiguracidk kezelésére mind biztonsag, mind kérések szamanak szempontja-
bol. A kornyezet mérte az egyes kddrészek futdsdhoz sziikséges id6t, a halézati forgalmat
pedig a Wireshark eszkdzzel rogzitettem €s analizaltam kés6bb. Azonos funkcionalitasu
Python alternativa hijan méréseim sordan a SUDS min&ségi mutatéit az Apache CXF-¢€ivel
hasonlitottam 0ssze.

A hélézati forgalom mérése sordn arra jutottam, hogy a SUDS egy olyan HTTP
konyvtarat haszndl, mely nem tdmogatja a protokoll keep-alive opcidjit, mely lehetové
tenné, hogy ne épiiljon ki minden egyes kéréshez egy tjabb TCP kapcsolat. Bar ez el-
s6re nem tlinhet nagy kiillonbségnek, 100 kérés esetén mar két és félszer annyi csomagot
cserélt a SUDS a szolgéltatdssal, mint a CXF esetében, mely tdmogatja ezt a lehet&séget.

Az proxy példanyositds idejénél azt mértem, mennyi id6 telik el a kliens induldsatol
addig, hogy rendelkezésre 4ll egy proxy objektumra mutatd referencia. Minden konfi-
guricid esetében kevesebb mint félid6 alatt végez a SUDS a CXF-fel szemben, emellett
érdekes, hogy digitalis aldirds esetében dtlagosan tovabbi 210 ms-ba keriil a komponens
inicializdldsa, mikozben a CXF inicializdldsa ilyenkor is nagysdgrendileg ugyanannyi id6t
igényel. Egy logikus magyarazat a jelenségre a konyvtarak kizardlag igény esetén torténd
megoldasa.

A masik mért id6 a proxy rendelkezésére dllasat kovetden egy-egy kérés teljes lefu-
tasdhoz sziikséges idStartam. Ehhez 1, 10 és 100 kérést futtattam minden egyes konfi-
guricid esetében, hogy a fix és valtozd koltségek jol latszodjanak. Az eredményekbdl
latszik, hogy egy-egy kérés inditdsa esetén még kétszer annyi id6be telik a CXF szdma-
ra a hivés, a kérések szadmanak novelésével azonban ,,0lvad” az eldény, 100 kérés esetén
mar a CXF teljesit jobban, igaz, csak 1-5%-kal. Digitalis alairds esetén azonban még 100
tizenetnél is 10%-kal kevesebb id6 alatt végez a SUDS, vélhetden a nativ komponensek
alkalmazasanak koszonhetden.

Bar a nativ komponensek haszndlata j6tékonyan hat a teljesitményre, fontos megje-
gyezni, hogy ezek valasztasakor valds rizikd, hogy alacsony szintii hibak (pl. null pointer
feloldas) esetén nincs ott a menedzselt kornyezet ,,véd6hal6ja”, akar az egész alkalmazas

futdsa véget érhet az operacids rendszer beavatkozasa altal.

A fejlesztés és tesztelés végeztével ligy értékelem, sikeriilt egy megfelels teljesitmé-
nyl terméket alkotni, azonban van még b&ven lehet6ség ennek fejlesztésére. Rovidtavon
a HTTP keep-alive opci6 kihaszndlédsa javithat a teljesitményen, kozéptavon pedig meg-
valdsitasra keriilhet az XML titkositds is, melynek implementéldsat a jelenlegi szabvany
biztonsagi problémadi miatt hagytam ki. Végiil hosszu tdvon bévithetd lenne a digitdlis
alafrasra hasznélhat6 algoritmusok kore — bar a jelenleg tdmogatott RSA és DSA val6ban
lefedi a gyakori felhasznaldsi médokat, az XML aldirdsrdl sz6l6 szabvany tdmogatja pl.

az OpenPGP hasznélatait is.

X1il

Introduction

Looking at the history of I'TC systems, interoperability was not a big issue at the beginning
— simple systems were able to communicate using primitive methods. As time went by,
systems evolved, and innovation lead to such diversity that high level interconnection of
systems became a major headache of system integrators. Naturally, the market reacted and
came up with various solutions, well distributed along the scale of bloatedness, including
DCOM, CORBA and XML-RPC.

These competing solutions were and are more or less usable within their scopes, lim-
ited by platform-dependence, but more importantly the inability to operate over the Inter-
net — either because of the incompatibility with appliances at network borders, or because
of security issues. The World Wide Web brought simple open protocols and mature so-
lutions to pass traffic through network borders, making it an ideal choice as the transport
layer for the next generation of interoperability platforms.

SOAP was created as the encoding method of request, reply and fault messages ex-
changed between services and consumers over the transport layer, but it didn’t solve all
the problems in itself. For instance, trusting a network out of control of both parties re-
quired additional standardized ways of ensuring the confidentiality and integrity of the
transmitted message, as well as authenticating the consumer and/or the service. In case of
this problem, WS-Security was born as a solution, providing a simple and open method
of ensuring the necessary level of security for SOAP messages relayed over untrusted
networks.

Python was one of the few languages that — despite its roots — could emerge from the
academic circles, and found its way to developers, hackers, and system administrators
alike. The rich set of libraries and sane design made it a perfect choice for high-level
implementation, allowing a smooth transition from ideas through prototypes to solutions
ready for deployment — the same feature that caused many people writing it off as a
“scripting language”. As was Java before the millennium, Python is currently considered
by many as the language of the Internet (or at least one of them), which means, advanced
SOAP support is a must-have in order for Python to be accepted as the foundation of a
wider range of systems.

One of the negative side effects of the community-driven development of the Python

ecosystem is that features needed by less people get a smaller fraction of developer atten-

Andras Veres-Szentkiralyi Extending Python Web Services

tion — and this was exactly the fate of advanced Python SOA implementations. Although
SOAP libraries did exist, their support was limited to the level the developer(s) required,
resulting in many organizations choosing other platforms solely based on their advanced
SOAP support — creating a situation I refused to accept.

The first chapter introduces the Service-Oriented Architecture and web services, in-
cluding their brief history and principles. Using these as a basis, the scope is first focused
on advanced web services, and then on the security of them. The second chapter sheds
some light on the other half of the thesis title, Python, and presents the available SOA
solutions compatible with the platform, along with their advantages and disadvantages.
The chapter ends with a quick summary of the Python SOA landscape, picking SUDS as
a suitable base of improvement.

The third chapter goes into detail about SUDS, starting with its interface presented
to the developer, then focusing on the security-related parts of its internals, ending in
its interesting stubs awaiting improvement. The fourth chapter starts from the deficien-
cies of SUDS, and introduces the component I designed to enable advanced web service
consumptions. In the second half of the chapter, a testbed is shown, which I developed
to make sure that the result of the improvement is able to interoperate with services cor-
rectly. The fifth chapter demonstrates the measurements I did to evaluate the quality of my
solution, and the sixth closes the thesis study by summarizing the development process

and its results, offering future improvement ideas to address the remaining issues.

Chapter 1

Service-Oriented Architecture and Web

Services

1.1 SOA history and principles

As [1] remembers, not long after the new millennium, the world of IT got fed up with in-
teroperability, reusability and other issues — and Service-Oriented Architecture was born.
The paradigm was built upon the foundations of the best practices of IT that time, and
tried to encourage software design made of loosely coupled components. Reduction of
time to market and business agility are advantages obvious to both business and IT people.
This step is a logical one in the course of software engineering history — states [5]. The
technological shifts always followed the increasing software complexity from functions
through classes to components. But even the users of components are tied to the tech-
nology (runtime, platform) the component uses. According to [6], SOA addresses this

problem by the following guiding principles.
e Reusability, granularity, modularity, composability, and componentization
e Compliance to standards (both common and industry-specific)

e Service identification and categorization, provisioning and delivery, monitoring and

tracking

1.2 Web Services

Many technologies tried to implement SOA (or something similar), for example Mi-
crosoft’s DCOM and OMG’s CORBA also offered a somewhat standardized way for en-
tities (components, services) to interoperate. One of the problems were the limitations
of the implementations — DCOM obviously depended on Windows as a platform, and al-
though CORBA had (and has) ORB implementations available to several platforms and

3

Andras Veres-Szentkiralyi Extending Python Web Services

under diverse licensing, the interoperability between these often was an issue. An even
more troubling problem was the communications foundation of these solutions. Most of
these (DCOM and CORBA at least for sure) used a binary protocol and required direct
connections to TCP ports — sufficient for components communicating within the local
corporate network, but unimaginable over the Internet.

The World Wide Web introduced HTTP as a transport protocol, one especially de-
signed for use over the internet. Besides that, corporate networks could also make use
of it, since proxy servers could be installed with the option of inspection, forwarding,
filtering and mangling of content passing through. These two properties made it a great
foundation for interoperation, since the protocol allows any kind of content to be trans-
ferred, regardless of its type.

In a wide sense, every service available for invocation through HTTP can be consid-
ered a web service, regardless of the layer used above HTTP. XML-RPC was the first such
“payload”, and as the name suggests, its semantics were based on method invocation. The
structure is surprisingly simple, the method name and parameters are transmitted as the
body of an HTTP request, and the body of the response contains the return value(s), both

serialized using XML. A sample transcript can be seen on Figure 1.1.

<?xml version="1.0"7?> <?xml version="1.0"7?>
<methodCall> <methodResponse>
<methodName>getPop</methodName> <params>
<params> <param>

<param> <value>

<value> <14>1733685</1i4>

<string>Budapest</string> </value>

</value> </param>

</param> </params>
</params> </methodResponse>
</methodCall>

Figure 1.1. Transcript of an XML-RPC method invocation

1.3 SOAP and friends

As [7] wrote, SOAP has evolved from XML-RPC inside Microsoft — the base operation
remained the same, the method identification and parameters are serialized using XML,
and so is the response. One notable difference is the absence of XML header (SOAP uses
UTEF-8 encoding implicitly) and the extensive use of XML namespaces, as it can be seen
on Figure 1.2. W3C took control of the specification, and SOAP became the encoding
of web services, with usually HTTP(S) or SMTP as the underlying transport mechanism.
WSDL was born to describe the interface of web services, using XML again. Although

4

Andras Veres-Szentkiralyi

Extending Python Web Services

<soap:Envelope xmlns:soap="
http://schemas.xmlsoap.
org/soap/envelope/">
<soap:Body>
<bme:getPop xmlns:bme="
http://vsza.hu/bme">
<city>Budapest</city>
</bme:getPop>
</soap:Body>
</soap:Envelope>

<soap:Envelope xmlns:soap="
http://schemas.xmlsoap.
org/soap/envelope/">
<soap:Body>
<bme:getPopResponse
xmlns:bme="http://vsza.
hu/bme">
<return>1733685</return>
</bme:getPopResponse>
</soap:Body>

</soap:Envelope>

Figure 1.2. Transcript of a SOAP method invocation

other technologies appeared (such as UDDI for service discovery), the two dominant
players in web services are SOAP and WSDL.

WSDL is usually automatically generated from services written in any programming
language. Client libraries running on platforms supporting dynamic dispatch (such as
Python, Ruby, PHP) usually allow dynamic creation of service proxies for consumption
using the WSDL. The other approach, available for all runtimes and most programming
languages is automatized code generation, during which class hierarchies representing
the service interfaces are generated for later used in compiled code. During invocation,
the proxy serializes the platform-dependent data structures into a SOAP envelope and
transfers it to the service, which does the exact opposite by marshalling the parameters
into native objects. This way, both the service and the consumer code handles entities
that are native to the platform they’re dependent on, and can interoperate with each other,

without any prior knowledge of the technology powering the “other side”.

1.4 Advanced web services

1.4.1 Introduction

Using WSDL as a machine-parseable, standardized form of service descriptor was an
enormous improvement on the way of web services from XML-RPC to SOAP. W3C
and OASIS standardized many additional methods of improving web services, such as
metadata exchange, security and reliable messaging. On the bright side, these make it
possible to build advanced services while maintaining responsibility separation (imple-
mentation focuses on business logic) and without sacrificing interoperability. But on the
other hand, these standards are complex, and continuously evolve — a great example is
WS-Reliability vs. WS-ReliableMessaging — so not every SOAP implementation support

everything, which in turn limits interoperability and thus platform independence.

Andras Veres-Szentkiralyi Extending Python Web Services

1.4.2 Security

During the course of my thesis, I focused on the technologies for securing web services.
When introducing this area to people, many reply with “just use HTTPS”, which indeed
provides transport security between two hosts. The problem with that approach is that one
of the key features of web services is the ability to interconnect services and consumers
in different networks, which means that the network traffic might have to pass through
HTTP proxies and other advanced network appliances. This makes HTTPS inadequate to
establish a secure (authenticated, digitally signed, and/or encrypted) end-to-end connec-
tion, so the problem has to be solved inside SOAP, and HTTPS can only be thought as an
outer layer of protection.

As [3] wrote, initial development was done by IBM and Microsoft, resulting in a
roadmap in 2002. Verisign joined later that year, and the trio conceived the first version
of the standard. It got submitted to OASIS, they refined the details and published WS-
Security 1.0 on April 19, 2004, which covers all three aspects I mentioned in the previous

paragraph using the following technologies.

Authentication Security tokens can be attached to the SOAP message header for the
sender to identify herself. This can be done using either username-password pairs
(in plaintext or digested format) or by using a more heavyweight solution like X.509

or Kerberos.

Digital signature Signatures can be attached to the SOAP message header in order to
protect the integrity of the message and provide non-repudiation. It also supports
many strategies, such as RSA, DSA or PGP keys.

Encryption Any subset of the SOAP message can be encrypted, so that only the intended
recipient has access to its contents. Since the current specification was found vul-

nerable to cryptanalysis by [4], I ignored this part in my thesis.

Chapter 2

Existing Python SOA solutions

2.1 About Python

2.1.1 Language

According to [8], “Python is an interpreted, interactive, object-oriented programming lan-
guage”. What’s missing from this self-description are those things that make the language
unique. The first thing most people recognize while reading a Python source code, is the
use of indentation for structure markup. This feature might be odd and strict for first sight,
but it makes code written by other people highly readable and reusable. The subsequent
clean feeling of the code is strengthened even more by the availability of functional con-
structs, which give the right tools for most purposes into the hands of the developer. The
essence of the language can be reduced to a single phrase, which can be interpreted in
both positive and negative ways: “executable pseudocode” — code snippets are explicit

enough for most people (even those without Python knowledge) to understand.

2.1.2 Runtime

The first and most widely-used interpreter is called CPython, and it’s the reference im-
plementation of the language runtime. It compiles source code (. py files) into bytecode
(. pyc files) for interpretation. It also provides an interactive shell, which can be used for
experimentation or debug purposes. Because of this, the UNIX program loader can use
it as a standard interpreter, so Python scripts prefixed with an appropriate shebang can be
run directly. As the name suggests, the implementation is written in mostly C/C++, which
causes built-in functions to perform well.

There are separate projects that bridge the Python world with other solutions — Iron-
Python and Jython compiles Python code into .NET and Java bytecode, respectively, and
Nokia ported Python to its S60 (Symbian) platform. This way, Python can interoperate

Andras Veres-Szentkiralyi Extending Python Web Services

with existing frameworks and libraries at a lower level, if needed. Another approach is

outlined in the next subsection.

2.1.3 Libraries

Python comes with “batteries included” — libraries are available for most purposes a de-
veloper might need, such as file manipulation, network connectivity, parsing and serial-
izing from and to a variety of formats. Libraries can be either written in Python — in
which case, they are as portable as any other Python code between runtimes — or using
the C/C++ API. Thin, sometimes automatically generated libraries, that only wrap certain
native libraries are called bindings — there’s even a dialect of Python called Cython that
allows calling of C/C++ functions, and produces native code. Because of these features,
although interpreted languages are usually suffer from poor performance, well-designed
Python applications perform only high-level orchestration in the interpreted engine, and
delegate computationally intensive tasks to native code. This design motivates developers
to avoid premature optimization, while allowing fast prototyping and outstanding perfor-

mance using the same foundations.

2.2 Python SOA solutions

2.2.1 Introduction

The community around the Python ecosystem is one of those closest to the “free software
culture” envisioned by Richard M. Stallman and Eric S. Raymond. This results in libraries
being written mostly out of curiosity and immediate need — a good combination for a good
base system, not so good for SOAP. Many other ways of remote method invocation are
solved in Python libraries, but SOAP has maintained a low level of maturity. The basic
invocation examples usually work, but the level of development clearly shows the needs
of the developer.

This problem is partly caused by the network effect: if everybody uses .NET and Java
for web service interoperation, if a platform needs to be chosen for a solution to access
them, it usually seems logical for most people to choose one of the two heavyweight
products. The other factor is the mindset of Python developers — they usually like to build
systems out of small, autonomous entities, interconnected by simple and trivial protocols,
and SOAP is not the first thing that comes to mind with these features, despite the fact
that it can be used wisely.

Of course, there are developers both working on and using SOA with Python, there’s
even a public mailing list dedicated for the purpose, archives and subscription are avail-

able at http://mail.python.org/mailman/listinfo/soap.

http://mail.python.org/mailman/listinfo/soap

Andras Veres-Szentkiralyi Extending Python Web Services

2.2.2 SOAPy

As [9] wrote, it was the best SOAP client in the Python ecosystem, but the project is
abandoned. As no one maintains the codebase — its homepage was last modified in 2001
— it became incompatible with later Python releases, which makes it hard to use in modern
environments. The Debian project doesn’t even maintain a package, so the only way to
install it is to download the tar.gz file (uploaded in April 27, 2001) and extract it manually.

I found its internal structure very simple — the library consists of two Python source
files, both under 500 lines of length. By looking at the import section, it was obvious that
it used libraries and functions that are way obsolete now. Still, some of them are kept for
the sake of backwards compatibility, but the PyXML package it used for XML processing
is also no longer maintained, and had been removed from most major GNU/Linux dis-
tributions. The documentation — including the examples — suggested that SOAPy offered

client functionality only, and I didn’t find any contradicting evidence in the source code.

2.2.3 Zolera SOAP Infrastructure

ZS1 is the other “old boy” among Python SOAP libraries. As [10] states, it was last fully
released in 2007, but unlike SOAPYy, it can still be used with recent Python environments.
It offers two ways of operation: for simple services it can construct the SOAP messages
without a schema (Binding class), and for complex services a proxy (ServiceProxy class)
can be used to serialize arguments. It supports code generation from WSDL (wsd12py),
and “can also be used to build applications using SOAP Messages with Attachments”
[11].

Ralf Schmitt wrote in [12] that ZSI is neither easy to set up and use, nor fast. I tried
it anyway, and it was easy to install, since Debian still maintains a package. The first
ServiceProxy example, which I took straight from the ZSI documentation failed, but I
figured out that they changed the structure, so I managed to run a test. It worked pretty
well as a client, but it lacked any advanced debugging features — for example, the list of
methods could only be determined by listing the methods of the service proxy. Also, code

(re)generation is necessary for complex data types, and is far from being trivial.

2.2.4 soaplib / rpclib

Soaplib focused on server-side SOAP implementation, using Python decorators, and pro-
vided WSGI-compatible services, so deployment was possible with both standalone pro-
cesses or any WSGI-compatible web server (such as Apache mod_wsgi). [9] wrote that
“creating clients is a little bit more challenging”, so I looked through the documentation
and found that according to [13], the developers did “the right thing” and shifted their

Andras Veres-Szentkiralyi Extending Python Web Services

entire focus on server implementation by dropping client functionality in favor of SUDS
(see section 2.2.5) at version 0.9.

The project was later renamed to rpclib, and widened its scope — the old library only
receives bug fixes, as the main developer focuses on the new one. I tried using it, and
found it pleasant to use. Despite Python being a dynamically typed language, enabling
code to be accessible via SOAP had not “littered” the code, and it offered automatic
WSDL generation.

2.2.5 SUDS

SUDS is a relatively new SOAP client library, compatible with Python 2.4 and newer
releases. Its operation is like the proxy feature of ZSI, but it doesn’t require any code gen-
eration. Complex classes can be assembled using the factory pattern, and while it might
seem that parsing WSDL and generating class hierarchy on-the-fly is slow, the built-in
caching provides quite a performance. It supported several methods of authentication,
including HTTP basic and digest, and also NTLM, which is necessary to consume Mi-
crosoft SharePoint web services. According to the general opinion of related forums and
mailing lists (including [9]), SUDS is the preferred Python way of creating SOAP clients,
and the library doesn’t depend on obsolete components.

SUDS was released in a regular manner till 2010, and is available as a package in
major Linux distributions. This way installing the library was not a big issue, and the
documentation [14] covers all common use-cases. First I tried it with a basic invocation,
and it worked as expected. Special methods were overridden in a way that using the
print command on SUDS object rendered a nicely formatted, human readable printout,

which makes debugging and experimentation much easier.

2.2.6 sec-wall

Although [15] describing sec-wall as “a security proxy that comes with tons of interest-
ing features, very good documentation and an exceptionally friendly community” might
sound like the usual shameless self-promotion, this relatively new tool (1.0 released in
April 2011) is a real gem. It acts as a proxy, thus enables the transformation of any SOAP
backend into an advanced web service. Although written in Python could have meant
poor performance, it takes the issue seriously and makes use of libraries that provide a
native event-driven architecture.

I found it during the field-work, and I worked together with its author, Dariusz Sucho-
jad to improve it — one of the results were complete and correct UsernameToken support
(both plain and digest), and an experimental digital signature implementation. Beside

the performance and reusability, the quality of the software is also surprisingly great; it’s

10

Andras Veres-Szentkiralyi Extending Python Web Services

built around the Python Spring Framework, making good use of the dependency injection

feature, and its tests provide 100% code coverage.

2.2.7 Common problems

While inspecting libraries offering both service and consumer functionality, unfortunately
they provided no or little support for advanced web services. SUDS offered UsernameTo-
ken, but didn’t work in any mode, soaplib/rpclib and ZSI didn’t even mention the possi-
bility of such solutions — although ZSI had some unused code implementing XML canon-
icalization. SOAPy barely even implemented SOAP — besides it’s unusable in modern
environments. Although sec-wall solves the situation by providing proxy support, the
problem of the client side remains — and that’s exactly why I decided to take a close look
into SUDS.

11

Chapter 3

Opportunities and internals of SUDS

3.1 Introduction

As I described in section 2.2.5, SUDS is the de facto way of consuming web services
in Python. One of the most compelling features lies within its simplicity and user-
friendliness. These help in the beginning by making it really easy to create a working
prototype in no time both by using the interactive shell and writing scripts — but later the
code is still readable, and, at the same time, caching helps eliminating the performance
trade-off. A sample run, consuming a currency rate service using SUDS in the interactive

Python shell can be seen in Figure 3.1.

3.2 Internal structure

In order to improve SUDS, I had to discover its inner workings — the documentation
covered standard use-cases pretty well, but told little about architecture. I split the code
in time domain into two pieces, the separator being the end of suds.client.Client object
instantiation. Before that WSDL fetching and parsing happens, and afterwards, during

invocations, SOAP messages are built, sent, and responses are parsed and returned.

3.2.1 Client proxy instantiation

The Client object is the “soul” of the library and can be found in the suds.client module.
The constructor has one fixed parameter (the WSDL URL), all the others get stored in a
dictionary for later use. Upon creation, the WSDL gets fetched and all the plugins (see
section 3.3.2) are notified. The WSDL is parsed for service definitions and schemas —
these are used to create the factories later used for the instantiation of complex objects
and for lookup on method invocation. The root element of the DOM representing the

WSDL is stored for the whole lifecycle of the object in the wsdl attribute, and the services

12

Andras Veres-Szentkiralyi Extending Python Web Services

Python 2.7.2+ (default, Aug 16 2011, 07:03:08)

[GCC 4.6.1] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> from suds.client import Client

>>> url = ’'http://www.webservicex.net/CurrencyConvertor.asmx?WSDL’

>>> ¢ = Client (url)

>>> print c

Suds (https://fedorahosted.org/suds/) version: 0.4.1 (beta) build:
R703-20101015

Service (CurrencyConvertor) tns="http://www.webserviceX.NET/"
Prefixes (1)
ns0 = "http://www.webserviceX.NET/"
Ports (2):

(CurrencyConvertorSoap)
Methods (1):
ConversionRate (Currency FromCurrency, Currency ToCurrency,
)
Types (1):
Currency
(CurrencyConvertorSoapl?2)
Methods (1) :
ConversionRate (Currency FromCurrency, Currency ToCurrency,
)
Types (1):
Currency

>>> c.service.ConversionRate (' EUR’, ’'HUF’)
315.6003

Figure 3.1. Requesting currency conversion rate using SUDS

13

Andras Veres-Szentkiralyi Extending Python Web Services

attribute is set to an instance of ServiceSelector, the key to method invocation (see section
3.2.3).

3.2.2 Instantiation of complex objects

Since many web services expect complex objects as an input parameter, its instantiation
is a problem present in all web services clients. As I mentioned in section 2.2.3, ZSI
solved this problem in the “classic” way, with source code generation, which makes ex-
perimentation tedious and increases turnaround times. In contrast, SUDS offers a solution
implementing the Factory pattern, a “method” (actually a callable attribute) of the Client
class, which returns an appropriate object, given a class name. This object can be later
populated as a regular object, or its attributes can be used in case of enumerations. Since
version 0.3.8 SUDS also supports the implicit conversion of native Python dictionary ob-
jects to SOAP complex types, using the keys as attribute names, which can lead to cleaner

code in some cases.

3.2.3 Service method invocation

As it can be seen on Figure 3.1, users simply reference method names, like it’s the attribute
of the service object — behind the scenes, the services attribute makes use of Python
dynamic dispatch. In this case, the suds.client.ServiceSelector class overrides the special
__getattr__ method, thus the sample invocation on Figure 3.1 caused the Python
runtime to first call c.service.__getattr__ with getConversionRate as a string
parameter. In case of success, the method returns a callable (function pointers in C/C++,
delegates in C#), which is invoked next with the actual parameters supplied by the user
to the getConversionRate method call. This makes use of another Python feature — the
positional and named parameters can be retrieved as a list and dictionary, respectively.

If multiple ports and/or services are available, the same dynamic dispatch is played

again (sometimes with __getitem__ instead of __getattr__), the complete lookup

chain is Client — ServiceSelector — PortSelector — MethodSelector — Client. The
second and third step can be implicit, in that case the first service or port will be used —
in the end the program flow enters Client at the invoke method, with completely specified
parameters. The parameters are transformed into the SAX representation of a SOAP
envelope, as it can be seen on Figure 3.2, which in turn can be serialized as an XML
string. This binary data is now sent using the transport layer (currently urllib2), which
returns the response — the same process gets repeated as with the request, but reversed. In
the end, the caller receives the response transformed back to instances of data types native
to Python.

14

Andras Veres-Szentkiralyi Extending Python Web Services

SOAP AN AN

request Para-
meters

Enve-
/ e —
l 7/
caller
unmarshalled

SOAP
response

Y

A
3|

Transport

o
S

(m|

Web service

N N

Return _ Enve- |4

value parsed lope

Figure 3.2. SUDS message processing

3.2.4 Document Object Model of SUDS

As [16] defines it, “XML DOM is a standard for how to get, change, add or delete XML
elements”, which is the better way to construct XML output — the worse being string
concatenation. SUDS has its own implementation, and as [14] states, it “was written [be-
cause] elementtree and other [Python] XML packages either: have a DOM API which
is very unfriendly or: (in the case of elementtree) do not deal with namespaces and es-
pecially prefixes sufficiently” — and in retrospect, it was a perfectly sane decision back
then. The SUDS DOM resides in the suds.sax module, and interfaces the outside world
with the Python built-in SAX parser. It registers itself as a SAX event handler, and builds
the document tree from its own objects in response to parsing events, so there is a clear
separation between the Python XML library and the implementation of SUDS.

Although now we have LXML (see section 4.2.2) which would have satisfied those
conditions (and is used by rpclib), it was probably not in this state of maturity, when the
SUDS project kicked off. It has its own peculiarities, such as namespace handling is done
using (prefix, namespace) tuples — in contrast with standard notations such as dictionary
objects or James Clark style. This self-developed solution also caused the appearance of
“double namespaces” — the SOAP-ENV namespace was declared with one prefix for the
envelope and header, and another for the body. While working on improving SUDS, I also
found that it had several deficiencies, for instance, there’s no way of handling attributes
with namespaces. It could seem that now it’d be time to replace the library with a thin
wrapper around LXML or some other functionally equivalent components, but it’d break

existing code depending on the internals of SUDS.

15

Andras Veres-Szentkiralyi Extending Python Web Services

3.3 Opportunities

3.3.1 Current WS-Security implementation

Using the examples in the SUDS documentation, it was easy to find that the WSSE im-
plementation had a clean OO design, as it can be seen on Figure 3.3. The Security object
encapsulated the collection of tokens as a smart container. During invocation, the xml
method gets called, and it simply constructs an appropriate wsse:Security header, and fills
it with the result of the xml methods of all the tokens, before returning it to the caller.
The class diagram also makes it clear that there is no support for digital signatures
or encryption — although surprisingly, there are (currently unused) namespaces defined in

the source code for both of them.

<<module>>
suds.wsse
" Token
Security
+mustUnderstand: bool = True |~ fokens f+now(): datetime.datetime
T init () +utc(): datetime.datetime
+xml(): suds.sax.element.Element +sysdate(): str
+_init_ ()
|
UsernameToken
+username: str = None -
+password: str = None Timestamp
+nonce: str +created: datetime.datetime
+created: datetime.datetime +expires: datetime.datetime
+__init__ (username:str=None,password:str=None) +__init_ (validity:int=90)
+setnonce(text:str=None) +xml(): suds.sax.element.Element
+setcreated(dt:datetime.datetime=None)
+xml(): suds.sax.element.Element

Figure 3.3. Class diagram of the suds.wsse module

Timestamp

As [17] and [18] agree, WS-Security timestamp is useful in case the freshness of the
message needs to be verified — this can be important to avoid replay attacks, or to resolve
issues with two or more messages causing contradiction. The standard itself is trivial to
implement, and based on my observations of the codebase, the SUDS solution is complete
and correct — I later verified it also by connecting it to a properly set up CXF service. The
suds.wsse.Timestamp class even helps the user by automatically setting and formatting
the creation and expiration time — although the lack of digital signature implementation

makes this feature unusable for security purposes as highlighted by [2].

UsernameToken

According to [14], SUDS had a UsernameToken implementation, so I tried it with an

Apache CXF service. As it turned out, the burden of digest creation was put on the caller,

16

Andras Veres-Szentkiralyi Extending Python Web Services

and the type of the password wasn’t specified in the token, as required by WS-Security.
This limits the usability of the solution, but it’s certainly easier to extend it than creating

a new implementation from scratch.

3.3.2 Plugin system

Since version 0.4, SUDS has a plugin system that allows developers to extend its func-
tionality without the need to maintain a separate version of the library. During the con-
struction of a Client object, a list of plugin instances can be supplied, and their methods
will be called at specific points of the SUDS lifecycle. Most useful use-cases include
inspection and (optional) modification of the internal status. These objects should inherit
one of the classes in the suds.plugin module, and this way, only methods of interest need
overriding — those (currently three) ancestors define the points of interaction available.

The full list of these can be found in [14], I'd emphasize the one I found good use
of; it’s called MessagePlugin, has five possible points of interaction, and thus allows for a
fine-grained control over the SOAP message. As it can be seen on Figure 3.2, interception
and modification is possible at all important places, with the data available in the current
format (SUDS objects, DOM tree, or bytes) using holder objects called context. One
surprising thing I found was that if plugin execution raises an exception, instead of the
call failing, processing continues, and the details get logged using the Python logging
system — which means silent fail by default. Still, I found the plugin system to be a
well-designed, usable form of extending SUDS.

17

Chapter 4

Improving SUDS

4.1 Completing the implementation of UsernameToken

As I mentioned in section 3.3.1, SUDS had an incomplete UsernameToken implementa-
tion that lacked complete digest support (it could be only set up manually), and even the
plaintext method violated the standards by omitting the password type attribute. I changed

the constructor of the UsernameToken class in two ways.

e A new parameter of boolean type called digest was added to the parameter list. Its
default value is set to False, thus making it optional, so previously written code

depending on this method will continue to work as expected.

e If the new parameter is missing or set to False, the method performs the exact
same instructions as before. But if it’s set to True, the nonce and created variables

are set, and the digest gets calculated according to the standard.

The xml method — which creates the actual tree of Element objects — was also mod-
ified, so that it sets the Type attribute of the wsse:Password element to the appropriate
value, based on the digest attribute. This change had the “side effect” that it made the
plain text method standards compliant, so the UsernameToken implementation of SUDS

became complete and correct.

4.2 Implementing digital signatures — SudsSigner

4.2.1 Internal structure

The internal structure of the plugin can be seen on Figure 4.1, the stereotypes describe the
functionality (component or binding) and the runtime environment (Python or native) of
each component. Native components are preferred for their reusability and performance

— reusable components are tested more thoroughly, as more projects can depend on them,

18

Andras Veres-Szentkiralyi Extending Python Web Services

which makes them less prone to errors, thus more suitable for security-critical tasks, such
as cryptography (OpenSSL). From a performance point of view, XML parsing and pro-
cessing is also a task that is better done using native and mature code (libxml2) because of
its complexity. Python, on the other hand, is more suitable for the purpose of connecting

components together, and describe high-level business logic in a readable and portable

. <<NativeComponent>>
<<PythonBinding>> _l—o OpenssL
pyOpenSSL

A

<<uses>>

way.

1
1
<<PythonBinding>> \

pyXMLSec _O 1
<<NativeComponent>>
T XMLSec
le<uses>>
1

y

<<PythonComponent>>
SudsSigner

<<uses>>

v

<<NativeComponent>>
libxml2
<<PythonBinding>>
LXML

Figure 4.1. Component diagram of the SudsSigner plugin

<<PythonBinding>>
python-libxml2

ok o

4.2.2 Components used
Libxml2, python-libxml2 and LXML

“Libxml2 is the XML C parser and toolkit developed for the Gnome project (but usable
outside of the Gnome platform), it is free software available under the MIT License.”[19]
This sentence summarizes the project pretty well — it’s written in C, which is a good
compromise between performance, portability and usability, and it’s available under the
MIT license, which makes it possible to either bundle it to FLOSS projects or redistribute
it with proprietary software. Since many projects depend on it, the quality of the code is
high, and it passes all of the OASIS XML Tests Suite.

Python-libxml2 provides low-level Python bindings to access all the functionality of
libxml2. It has the advantages that the developer gets the full power of libxml2, but the
interface resembles the original C API, which causes longer development and debug cy-
cles. On the other hand, LXML[20] wraps libxml2 in modules and classes providing a

powerful high-level interface, which is more suitable for quick prototyping and maintain-

19

Andras Veres-Szentkiralyi Extending Python Web Services

able codebase — one good example of this difference is python-libxml2 returning error
codes versus LXML throwing exceptions in erroneous situations.

I chose this combination because no other combination can offer the performance of
the native parsing and processing engine combined with such rich and powerful Python

interface.

OpenSSL and pyOpenSSL

“The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade,
full-featured, and Open Source toolkit implementing [...] a full-strength general purpose
cryptography library.”’[21] This library is also written in C, has a unique Apache and BSD-
like license, and is FIPS 140-2 compliant. PyOpenSSL provides a friendly object-oriented
interface, which makes it possible to access all the functionality of OpenSSL I needed.
It’s also well-maintained, which makes installing it on modern OSes a breeze. I chose this
duo, because it seemed the only solution capable of handling PEM files in all the ways I

needed.

XMLSec and PyXMLSec

XMLSec is a C library based on Libxml2 and supports XML signature, encryption and
canonicalization.[22] It’s released under the MIT license, and is still maintained, so most
Linux distributions provide it as an easily installable package. It uses libxml2 for XML
processing and it can use several cryptography backends (OpenSSL, GnuTLS, Libgcrypt,
NSS) for signature creation and encryption.

Python bindings were created for the Glasnost project financed by the French Depart-
ment of Economy, Finance and Industry in 2003, but development seems to be ceased
around 2005. The bindings are still working, only one feature needed a patch sent to the
mailing list of the project in 2010. The documentation consists of a dozen examples and
an API reference generated from the source code, so the use of these bindings require
quite a bit of experimentation.

There are few other projects trying to create XML signatures, with not much success,
so I chose this one, because at least it worked, and with a bit of work, I managed to make

it do what I wanted.

4.2.3 The Python component

The class diagram of the Python component of the plugin can be seen on Figure 4.2, the
Python-specific notations are expressed using stereotypes. Since UML doesn’t support
functions, just methods, each module with functions have a pseudoclass named after the
module with module stereotype. The main class is the SignerPlugin, which directly in-

terfaces SUDS, its sending method is invoked after the SOAP envelope is complete, but

20

Andras Veres-Szentkiralyi Extending Python Web Services

<<module>>
suds.plugin

MessagePlugin

+marshalled(context) -
+sending(context) —> Plugin
+received(context)
+parsed(context)
+unmarshalled(context)
<<module>> A
SudsSigner T

<<module>>
plugin

SignerPlugin

+sending(context)

+ init (keyfile:str,keytype:str=None,pwd:str=None,
pwdCallback:callable=None, pwdCallbackCtx=None)

+load_keyfile()

+handle_keytype(keytype:str)

+detect_keytype(): str

+insert_signature_template(security:etree.Element)

+append_signed_info(security:etree.Element)

+append_key info(security:etree.Element)

+get_signature(envelope:str)

+__del_ ()
<<module>>
plugin
+set_algorithm(parent:etree.Element,name:str,
value:str)
+ensure_security header(env:etree.Element): etree.Element
+1xml_ns(suds_ns:tuple): dict
+ns_id(tagname:str,suds_ns:tuple): str

<<module>> <<module>>
SignatureMethods libxml2_ wrapper
. <<module>> <<ContextManager>>
SignatureMethods LibXML2ParsedDocument
+RSA: str
+DSA: str + init_ ()
+__enter__()
+__exit__ (type,value, traceback)
<<module>>

xmlsec_wrapper

<<ContextManager>> <<module>>
XmlSecSignatureContext | | xmlsec_wrapper

+_init_ () +init_xmlsec()
+__enter_ () +deinit_xmlsec()
+ exit_ (type,value,traceback)

Figure 4.2. Class diagram of the SudsSigner Python component

21

Andras Veres-Szentkiralyi Extending Python Web Services

before it’s sent. The only parameter (context) represents the SOAP invocation context,
which makes the serialized envelope available through its envelope attribute for access
and modification. The method body is merely six lines of code, all elementary functional-
ity is refactored to methods following the Single Responsibility Principle (SRP), and the
functionality can be described as two distinct steps.

1. The first step does two things — first, it finds and marks the body of the SOAP en-
velope with an ID (currently constant suds—signed), then the security header is
selected (or created if necessary) and a so-called signature template is inserted into
it. This kind of processing is most easily done using the ElementTree implementa-
tion of LXML, therefore this part is framed with LXML parsing and serialization —
both the input and the output is an XML string.

2. The second part finishes up and signs the XML output using the template provided
with the XMLSec library. The input and output are XML strings again, this time
parsed directly by the libxml2 parser.

Although the performance of the Python component is affected by its interpreted run-
time, I made several architectural decisions to rationalize CPU and memory consumption.
The SudsSigner class initializes the native libraries only once in the constructor and shuts
them down in the destructor, thus reducing the time needed to process one single invoca-
tion. Native components need direct resource management because of the lack of garbage
collection — Python provides context managers for this problem, so I created two wrapper
classes. LibXML2ParsedDocument parses an XML string using python-libxml2, while
XmlSecSignature Context encapsulates an XMLSec signature context object, and both free

the resources upon leaving the scope of their use, thus minimizing memory usage.

4.3 Testing and verification — Arena

4.3.1 Internal structure

Interoperability is one of the key motivations behind Service-Oriented Architecture, so a
SOA component is essentially worthless without the capability of “talking” to other im-
plementations. For this purpose, I developed a testbed called arena before implementing
any of the changes mentioned in the sections above. I chose Apache CXF as the reference
implementation, although any solution could be plugged in easily. The registry of test
subjects are stored in a JSON file (arena. json) which contains a serialized Configu-
ration object (see class diagram on Figure 4.3). Although the attribute names describe
their intents, the following outline of processing should shed enough light on their usage

to make the structure easy to understand.

22

Andras Veres-Szentkiralyi Extending Python Web Services

<<JSON>> <<EnvironmentVariables>>
Configuration Context
+ENDPOINT_URL: String
1 +WSDL_URL: String

+CONNECT_BACK: String

services consumers

1..n 1..n
<<JSON>> <<JSON>>
Service Consumer

+title: String +title: String

+directory: String
+startcmd: String
+wsdl: String

+cleancmd: String

+directory: String
+startcmd: String
+expected: String
+cleancmd: String

Figure 4.3. Class diagram of the business objects used in the Arena testbed

4.3.2 QOutline of processing
Testing

Sample command line: python arena.py test cxf suds
1. The service named cxf and the consumer named suds are loaded from the registry.

2. An unused TCP port number is generated using low-level socket operations.

3. An endpoint URL is generated using the port selected in step 2 — this gets stored in
the environment value ENDPOINT_URL.

4. A TCP socket is created, and its availability (hostname and port separated with a

colon) gets stored in the environment value CONNECT_BACK.

5. The WSDL URL is generated using the format provided in the wsd1l attribute of
the service object. This URL gets stored in the environment value WSDL_ URL.

6. The service gets started with its working directory set to the one specified in the

directory attribute of the service object.

7. When the service is ready, it connects to the raw TCP socket specified in the
CONNECT_BACK environment value. The testbed waits for this connection using a

— currently hardcoded — timeout.

8. The consumer gets started just like the service, but with its stdout monitored by the
testbed.

23

Andras Veres-Szentkiralyi Extending Python Web Services

9. The testbed waits for the consumer process to finish, and evaluates success based
on the presence of the string specified in the expected attribute of the consumer

object on the standard output.

10. Finally, the service process gets terminated, the testbed waits for it to finish up

before exiting.

Cleaning

Sample command line: python arena.py clean consumer cxf

1. The consumer named cxf is loaded from the registry.

2. If the cleancmd attribute is specified, it gets executed in the directory specified in

the directory attribute of the service object.

The cleaning process is important in case of solutions like Java, that use generated
classes, which can cache previously used WSDL files referring to TCP ports that are no

longer open.

4.3.3 Generation of keys

First, I used static keys from an earlier test, but later, the expired certificates cost me a
lenghtful debugging session. To avoid this, I removed those keys, and created a small
subsystem to generate the keypairs and certificates required for digital signature testing.
Since Java — and thus CXF, too — prefers the Java Key Store (JKS) format, which nobody
else really uses, one of my requirements was to create such solution that generates certifi-
cates along with private and public keys in both JKS and PEM formats. The direction of
conversion is arbitrary, I chose generating the keypair in JKS, because the first working
version used that, but it’d be trivial to change it to the opposite.

Since the generation and transformation of keys mainly consist of calling external
programs (keytool and openssl) and involve dependency handling, make was a logical
choice. I implemented the use-cases and their dependencies (see Figure 4.4) in a makefile,
and by adding a pseudo target (phony — using the terms of make) called all as the first rule,
which depends on the public KeyStore and the private PEM, issuing a make command
in the keys directory of the testbed generates all the necessary keys in one step. All the
dependency handling is automatically done by make, if any key changes or goes missing,
only the strictly necessary amount of files get regenerated — but if necessary, the clean

pseudo target guarantees a fresh start.

24

Andras Veres-Szentkiralyi Extending Python Web Services

CXF consumer SudsSigner

use key for signing use key for signing

Private
PEM

Private
PKCS12

Private
KeyStore

< keytool export

1
1
generate key :

Public

—_—— - = _keytool _import
< KeyStore

use cert for verification

Installer

Public key

CXF service

Figure 4.4. Use-case diagram of the Arena testbed key generator

4.3.4 Usage during the development

First, I created the testbed in parallel with developing a working CXF service-consumer
pair. Besides easy development and testing, this setup made it trivial to capture network
traffic generated by an already working solution — something that made developing the
SUDS improvements far more trivial than using just the specifications. I also changed a
bit of the architecture later, as the first version used polling — it tried connecting to the
service in a tight loop, and started the consumer right after the first success. As it turned
out, not all services are ready at the moment of socket binding, so I changed it to a push-
style communication — the service signals the testbed, when it’s ready to receive consumer
connections, which is also more resource conservative, since it requires one single TCP

connection as opposed to lots of rejected polling packets.

25

Chapter 5

Results

With the extensions and modifications I developed, it became possible to consume SOAP
web services using WS-Security authentication methods with Python clients. Since I
found no evidence that it was possible before, I don’t compare the solution to others in

the Python ecosystem, but with the implementation I used as a reference, Apache CXF.

5.1 Measurement

5.1.1 Methodology

I extended the Arena testbed (see section 4.3) with the option of measurement, which
had a number of advantages. It ensured that all runs were correct, and it already had the
knowledge to arrange a “rendezvous” between services and consumers. The items added

to the structure seen on Figure 4.3 were configurations and repeat values.

Configurations These define environment values, which are available to both the service
and the consumer, thus are perfect to let them know about the parameters of the
service. I defined the following suites to provide a way to get useful measurements.
No security is without any form of authentication
Plain UsernameToken uses UsernameToken with a plaintext password
Digest UsernameToken uses UsernameToken with a digested password
Signed message uses digital signature without a timestamp
Signed message w/ TS uses digital signature with a timestamp

Repeat values The repeat values are important for the measurements to get a clear pic-
ture about the fixed and variable costs of the SOAP processing. I chose 1, 10 and

100, as they provide reasonably fine enough resolution, while keeping runtime low.

Besides this, each combination was ran 5 times to lower the noise.

26

Andras Veres-Szentkiralyi Extending Python Web Services

I put code into both consumers (CXF and SUDS) that measured two values.

Proxy initialization measures the time needed to create a proxy instance that can be
used to invoke service methods. The measurement is started as the first statement
after the entry point, and is stopped right after an instance of the service proxy is

available in a local variable.

Invocation round-trip time measures the time needed to invoke a service method one
or more times. The measurement is started as the one for proxy initialization stops,

and stops right after the last call has ended.

In measurement mode, the Arena testbed creates two files — named using the timestamp
at program startup — a log file and a CSV table. The log file is written only by the Arena
measurement module, and currently contains one timestamped line for every test started.
The CSV table on the other hand receives only the header from Arena, its contents are
produced by the consumers. They get the name of the CSV file and a prefix that contains
the parameters of the current test through environment values, and using this, the two
time measurements can be appended to the table. After the tests have run, the CSV table

contains all the necessary data for timing analysis readable by any spreadsheet software.

5.1.2 Environment

For the sake of simplicity, I kept the setup used by Arena, so the service and the consumer
under test ran on the same host, and the loopback interface was used for network intercon-
nection. The full network traffic of the measurement was captured using Wireshark and
saved for later analysis — this way its overhead affected all test runs equally. This made it
also easy to check later that no other traffic went through the loopback interface used, thus
providing equal circumstances. The exact components along with their version numbers
and relations can be seen on Figure 5.1 and Table 5.1. Note that the composite relation-
ship between the Arena and the other processes describes the one between a process and a
subprocess, while the cloud and the lightning symbols represent the network interconnec-
tivity through the loopback interface, which is “bootstrapped” using information passed

through environment values.

CPU Intel Core 2 Duo T7300 @ 2 GHz CXF 250
RAM 4GB Python 2.7.2
OS Debian GNU/Linux 7.0 “Wheezy” SUDS 0.4.1
Kernel Linux 3.1.0/1686 Wireshark 1.7.0
JRE Oracle Java SE 1.6.0_26 LibreOffice 3.4.4

Table 5.1. Attributes and version numbers of the measurement environment

27

Andras Veres-Szentkiralyi

Extending Python Web Services

<<LinuxHost>>
hatvanegy

, Wireshark

.

loopback

<<PythonProcess>>

Arena <

<<PythonProcess>> <<PythonLibrary>>
SUDS client |- - > SUDS
<<JavaProcess>>
CXF service |- -
! <<Javalibrary>>
| = CXF
<<JavaProcess>> 1
CXF client | -!
> csv LibreOffice
metrics

Figure 5.1. Structural diagram of the measurement environment

5.2 Analysis

5.2.1 Network traffic

n Library Packets

CXF 15.00 |
1 SUDS 20.00 I
10 CXF 520 [
10 SUDS 11.00 | |
100 CXF 412 [
100 SUDS 10.10 | |

15 110 115 J20

Table 5.2. Network traffic generated by CXF and SUDS invocation

The amount of network traffic generated by an invocation becomes less of an issue as

network throughput and latency continuously gets improved, although having perfect in-

terconnections in every part of the system is far from reality. I used the TCP conversations

module of the Wireshark analysis module, and put the results into Table 5.2, which high-

lights a serious issue. Even in case of a single request, SUDS generates 33% more packets

as CXF, and at 100 requests, the difference becomes 250%. The cause is simple; the cur-

rent implementation of SUDS uses urllib2, part of the Python base library, as I wrote in

section 3.2.3. This solution opens a new TCP connection for each HTTP request by de-

fault, which causes overhead, especially a problem in case of HTTPS, which requires a

28

Andras Veres-Szentkiralyi Extending Python Web Services

TLS handshake in addition to the TCP one. Since this disadvantage of SUDS is unrelated
to its architecture, I propose a solution in Section 6.2.1.

5.2.2 Proxy initialization

Configuration Library Init 4+ 1 ms
No security CXF 1414.07 £ 37.78 | Ey
No security SUDS 35281 +1292 [
Plain UsernameToken ~ CXF 143740 £ 19.44 | b
Plain UsernameToken = SUDS 34276 +£21.87 [—%
Digest UsernameToken CXF 1441.67 +18.18 | b
Digest UsernameToken SUDS 337.45 £+ 6.33 —3
Signed message CXF 141933 £ 1297 | }
Signed message SUDS 54793 +14.18 [C—1
Signed message w/ TS~ CXF 1435.00 & 18.14 | b
Signed message w/ TS SUDS 547.13 +£3185 [+

1500 11000 JISOO

Table 5.3. Time needed for CXF and SUDS proxy initialization

The first thing that catches the eye on Table 5.3 is that SUDS instantiates the proxy in less
then half the time CXF needs to perform the same, regardless the configuration. It’s also
interesting to see that according to these timings, SUDS needs an additional 210 ms on
average in case of digital signatures, whereas CXF takes roughly the same time in every
case. The most logical explanation to me is that in the SUDS client, library import is done
on demand, so this extra time is what it takes to load the LXML, libxml2 and XMLSec

libraries, latter two requiring native components.

5.2.3 Invocation round-trip time

Per-invocation round-trip times are more interesting to architects, especially when de-
signing consumers with more than one call to the service, and Table 5.4 shows interesting
differences between the two solutions. In case of a single invocation CXF takes double the
time SUDS needs, but this gain decreases with the number of requests increasing, and at
100 calls without digital signatures, CXF performs 1-5% better. On the other hand, even
100 digitally signed messages are handled in almost 10% less time by SUDS, probably

caused by the elevated use of native components.

29

Andras Veres-Szentkiralyi Extending Python Web Services

Configuration n Library Invoke £ 1 ms

No security 1 CXF 376.40 + 1577 [

No security 1 SUDS 19542 +4207 =

No security 10 CXF 4466 +£2.19 O

No security 10 SUDS 3220+ 126 0

No security 100 CXF 1042 +0.19 |

No security 100 SUDS 15244075 |

Plain UsernameToken 1 CXF 831.00 = 35.28 | Ey
Plain UsernameToken 1 SUDS 407.82 + 1658 [

Plain UsernameToken 10 CXF 89.20 £+ 1.81 L

Plain UsernameToken 10 SUDS 5527+723 O

Plain UsernameToken 100 CXF 16.62 £ 0.46 !

Plain UsernameToken 100 SUDS 17.80 £ 0.20 I

Digest UsernameToken 1 CXF 839.60 & 30.63 | +
Digest UsernameToken 1 SUDS 412.79 + 1454 [

Digest UsernameToken 10 CXF 90.34 +£2.73 O

Digest UsernameToken 10 SUDS 58.02+850 O

Digest UsernameToken 100 CXF 17.30 £ 0.37 I

Digest UsernameToken 100 SUDS 18.49 £ 0.27 !

Signed message 1 CXF 1015.00 + 18.48 |)
Signed message 1 SUDS 517.87+2023 L[4
Signed message 10 CXF 132.18 £ 2.56 .

Signed message 10 SUDS 80.61 £3.07 O

Signed message 100 CXF 34.60 4+ 0.34 0

Signed message 100 SUDS 31.36 +0.74 0

Signed message w/ TS 1 CXF 1072.80 £ 50.63 | -
Signed message w/ TS 1 SUDS 52552+4945 [
Signed message w/ TS 10 CXF 133.26 £+ 3.06 -

Signed message w/ TS 10 SUDS 8092 +321 O

Signed message w/ TS 100 CXF 35.30 + 0.30 0

Signed message w/ TS 100 SUDS 32194+ 046 [

275 550 825 1100

Table 5.4. Time needed for CXF and SUDS invocation

30

Andras Veres-Szentkiralyi Extending Python Web Services

5.3 Architectural differences

5.3.1 Runtime environment

Apache CXF runs on Java VMs, most notably the one Oracle produces. This limits its
usage to — both hardware and software — platforms it supports, and at the same time, it
makes CXF a good choice in case of an application server (for example Glassfish) that
only supports Java code. In a similar way, SUDS requires a Python runtime, although
SUDS itself depends on such libraries that its code can be compiled to Java or .NET byte-
code, and it can run on Nokia S60 smartphones. A constraint comes with the SudsSigner
component I developed, which uses multiple native components, as it limits its use to the
CPython environment.

Because of this, they’re not that much competitors, since in case of a pre-existing
system, compatibility with the selected runtime will decide. But on the other hand, in
case of newly built systems, choosing Java vs. Python for a system that needs to consume

advanced SOAP web services will be a decision with “real” alternatives.

5.3.2 Use of native components

For reasons of performance and reuse, I chose to depend on native components while
implementing the SudsSigner component for SUDS. The timings clearly show that using
native code improves performance; my proof-of-concept quality code beat the one of
many talented CXF developers. Based on this, one may draw the conclusion that the usage
of native components is a clear advantage — but it’s far from the truth. The disadvantage is
that in case of managed components, all the code runs protected by additional safeguards,
and officially, the worst thing that can happen is an exception being thrown, whereas with
native components, the whole OS process can crash without prior notice.

The fact that it’s not a theoretical problem is proven by events that happened to me
while working on XML digital signatures with both sec-wall and SUDS. As I said in
section 4.2.2, LXML is preferred as it encapsulates low level issues with exceptions, so
when I was busy developing with direct libxml2 and XMLSec, I was surprised by the
fact that a single mistake in my code can lead to, for instance, null pointer dereferences,
causing immediate crash (segmentation fault). Long story short: native components might

give performance gains, but it’s important to check the price tag.

31

Chapter 6

Summary

6.1 Results summary

As a result of my work, SUDS now has correct UsernameToken and digital signature
implementation, which is a unique capability in the Python SOA world. I created an ex-
tensible testbed called Arena, and continuously tested the interoperability of my solution
with an Apache CXF service during the development. When I considered the proof-
of-concept code to be ready, I added measurement instrumentation to the testbed, and
analyzed the timings and the network traffic of both the SUDS and the CXF consumer.
As it turned out, my solution performed reasonably well, although I found plenty of room

for improvement.

6.2 Future development opportunities

Since most of the solutions in the Python ecosystem are free software in both senses!,

software is continuously improved by its community following the needs of their mem-
bers. For instance, during my thesis I also created and published a proof-of-concept code
to handle messages with attachments, and an interested user developed it further since
to the point of real world usability. The following three goals are those, I think can and

should be done in order to further improve Python SOA solutions.

6.2.1 Short-term: taking advantage of HT'TP keep-alive

The HTTP implementation used by SUDS generates network overhead, as I shown in
section 5.2.1. Several ways exist to solve this issue — as explained in [23] — some require
replacing urllib2 with a whole new library, others just require extending it with plugins

(so-called openers) — two things are for sure; it requires more than a simple method call,

Ifree as in free beer vs. free as in free speech

32

Andras Veres-Szentkiralyi Extending Python Web Services

and the solution must be carefully tested for compatibility with different versions of its
dependencies. Still, it only affects a relatively isolated part of the codebase, and would

improve performance regardless of any optional (security) features.

6.2.2 Mid-term: implementing XML encryption

As I mentioned in section 1.4.2, as of 2011, the XML encryption standard is considered
broken, so implementing it would do little or no good — in my opinion, false belief in
security is worse than no security at all. But as the future goes, XMLSec supports XML
encryption, so in case the library is updated against the new design, it’d be fairly straight-
forward to make use of it in SUDS and sec-wall. I consider it a mid-term goal, since in
this case (in contrast with digital signature), it makes more sense to use encryption on the
response too, so the solution should be usable in both scenarios. By looking at Figure 3.2,
it’s clear that the received hook could be used to construct a message plugin the same way

I did implementing the SudsSigner.

6.2.3 Long-term: wider cryptographic backend support

The current SudsSigner implementation supports only DSA and RSA digital signatures,
and while these are quite common because of the ubiquity of PKI implemented with
X.509 certificates, the WS-Security standard — or more specifically, the XML Signature
W3C Recommendation — contains guidelines for OpenPGP, too. As the main developer,
Aleksey Sanin wrote in [24], XMLSec could have had PGP support, but he had prob-
lems regarding the availability and licensing of the necessary library. Two years later,
John Belmonte wrote in [25] that he took part in a project that implemented PGP XML
digital signatures in Python, although it seems by his words that the product is closed
source. That said, it doesn’t seem impossible to add PGP support into XMLSec, using an
appropriate library — and GPGME [26] seems like the best candidate.

33

Bibliography

Books

[1] Bell, Michael (2008) — Service-Oriented Modeling: Service Analysis, Design, and
Architecture, Wiley & Sons, ISBN 0-470-14111-3.

[2] O’Neill, Mark et al. (2003) — Web Services Security, Osborne, ISBN 0-072-22471-1

[3] Hartman, Bret et al. (2003) — Mastering Web Services Security, Wiley & Sons, ISBN
0-471-26716-3

Papers

[4] “Jager, Tibor and Juraj, Somorovsky — How to break XML encryption”, CCS *11
Proceedings of the 18th ACM conference on Computer and communications secu-
rity, ACM New York, ISBN 1-450-30948-6

Web resources

[5] Stevens, Michael (April 16, 2002) — Service-Oriented Architecture Introduction
http://www.developer.com/services/article.php/1010451/

Service—-Oriented—-Architecture-Introduction-Part—1.htm

[6] Balzer, Yvonne (July 16, 2004) — Improve your SOA project plans
http://www.ibm.com/developerworks/webservices/library/

ws—improvesoa/

[7] Box, Don (April 4, 2001) — A Brief History of SOAP
http://www.xml.com/pub/a/ws/2001/04/04/soap.html

[8] General Python FAQ, Python Software Foundation
http://docs.python.org/fag/general#what-is—-python

34

http://www.developer.com/services/article.php/1010451/Service-Oriented-Architecture-Introduction-Part-1.htm
http://www.developer.com/services/article.php/1010451/Service-Oriented-Architecture-Introduction-Part-1.htm
http://www.ibm.com/developerworks/webservices/library/ws-improvesoa/
http://www.ibm.com/developerworks/webservices/library/ws-improvesoa/
http://www.xml.com/pub/a/ws/2001/04/04/soap.html
http://docs.python.org/faq/general#what-is-python

Andras Veres-Szentkiralyi Extending Python Web Services

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

What’s the best SOAP client library for Python, and where is the documentation for
it?, Stack Overflow
http://stackoverflow.com/questions/206154/#206964

Web Services for Python Email Archive, SourceForge
http://sourceforge.net/mailarchive/message.php?msg_1id=
28266815

Salz, Rich — ZSI: The Zolera Soap Infrastructure
http://pywebsvcs.sourceforge.net/zsi.html

Comparing WSDL SOAP libraries, Velocity Reviews
http://www.velocityreviews.com/forums/

t336483-comparing-wsdl—-and-soap-libraries.html

Change Log, soaplib v2.0.0beta documentation
http://soaplib.github.com/soaplib/2_0/pages/changelog.
html

Documentation — SUDS Trac
https://fedorahosted.org/suds/wiki/Documentation

sec-wall :: Home

http://sec-wall.gefira.pl/

XML DOM Introduction, w3schools.com

http://www.w3schools.com/dom/dom_intro.asp

Adams, Holt (March 30, 2004) — Best Practices for web services, Part 12: Web
services security, Part 2, IBM developerWorks
http://www.ibm.com/developerworks/webservices/library/
ws—bestl2/

Seely, Scott (October 2002) — Understanding WS-Security, MSDN
http://msdn.microsoft.com/en-us/library/ms977327.aspx

The XML C parser and toolkit of Gnome
http://www.xmlsoft.org/

Ixml - Processing XML and HTML with Python
http://1lxml.de/

OpenSSL: The Open Source toolkit for SSL/TLS
http://openssl.org/

35

http://stackoverflow.com/questions/206154/#206964
http://sourceforge.net/mailarchive/message.php?msg_id=28266815
http://sourceforge.net/mailarchive/message.php?msg_id=28266815
http://pywebsvcs.sourceforge.net/zsi.html
http://www.velocityreviews.com/forums/t336483-comparing-wsdl-and-soap-libraries.html
http://www.velocityreviews.com/forums/t336483-comparing-wsdl-and-soap-libraries.html
http://soaplib.github.com/soaplib/2_0/pages/changelog.html
http://soaplib.github.com/soaplib/2_0/pages/changelog.html
https://fedorahosted.org/suds/wiki/Documentation
http://sec-wall.gefira.pl/
http://www.w3schools.com/dom/dom_intro.asp
http://www.ibm.com/developerworks/webservices/library/ws-best12/
http://www.ibm.com/developerworks/webservices/library/ws-best12/
http://msdn.microsoft.com/en-us/library/ms977327.aspx
http://www.xmlsoft.org/
http://lxml.de/
http://openssl.org/

Andras Veres-Szentkiralyi Extending Python Web Services

[22]

[23]

[24]

[25]

[26]

XML Security Library
http://www.aleksey.com/xmlsec/

Python urllib2 with keep alive, Stack Overflow
http://stackoverflow.com/questions/1037406/
python-urllib2-with-keep—alive

Sanin, Aleksey (Jul 17, 2002) — PGP support, XML Security Library Discussions
http://www.aleksey.com/pipermail/xmlsec/2002/004344.
html

Belmonte, John (May 29, 2004) — PGP and XML Signature, XML Security Library
Discussions
http://www.aleksey.com/pipermail/xmlsec/2004/006278.
html

GnuPG Made Easy (GPGME)
http://www.gnupg.org/related_software/gpgme/

36

http://www.aleksey.com/xmlsec/
http://stackoverflow.com/questions/1037406/python-urllib2-with-keep-alive
http://stackoverflow.com/questions/1037406/python-urllib2-with-keep-alive
http://www.aleksey.com/pipermail/xmlsec/2002/004344.html
http://www.aleksey.com/pipermail/xmlsec/2002/004344.html
http://www.aleksey.com/pipermail/xmlsec/2004/006278.html
http://www.aleksey.com/pipermail/xmlsec/2004/006278.html
http://www.gnupg.org/related_software/gpgme/

Appendix

37

Andras Veres-Szentkiralyi Extending Python Web Services

A.1 Availability of relevant source code

A.1.1 SUDS

Although I sent the patches enabling SUDS to digitally sign messages on May 21, 2011,
as of December 2011, there’s been no response from the maintainers. Because of this, the

only way to obtain this code is my git repository hosted on GitHub.

Web access: https://github.com/dnet/suds
Git URL: git://github.com/dnet/suds.git
License: GNU LGPL version 3 (as it’s part of SUDS)

A.1.2 SudsSigner

The component for creating WS-Security digital signatures is implemented as a message
plugin, and is to be considered a separate software. The source code can be downloaded

from my git repository hosted on GitHub.

Web access: https://github.com/dnet/SudsSigner

Git URL: git://github.com/dnet/SudsSigner.git
License: MIT

A.1.3 PyXMLSec

The Python bindings for XMLSec were unmaintained since 2005, and the functional-
ity SudsSigner needs can be only achieved in recent Python environments using a patch
posted on the mailing list. I imported the Subversion repository of the project, applied the
patch from the mailing list, and published this version of the code in my git repository
hosted on GitHub.

Web access: https://github.com/dnet/pyxmlsec
Git URL: git://github.com/dnet/pyxmlsec.git
License: GNU GPL version 2

38

https://github.com/dnet/suds
git://github.com/dnet/suds.git
https://github.com/dnet/SudsSigner
git://github.com/dnet/SudsSigner.git
https://github.com/dnet/pyxmlsec
git://github.com/dnet/pyxmlsec.git

List of Figures

1.1
1.2

3.1
3.2
33

4.1
4.2
4.3
4.4

5.1

Transcript of an XML-RPC method invocation 4
Transcript of a SOAP method invocation 5
Requesting currency conversion rate using SUDS 13
SUDS message processing o v v i i e 15
Class diagram of the suds.wssemodule 16
Component diagram of the SudsSigner plugin 19
Class diagram of the SudsSigner Python component 21
Class diagram of the business objects used in the Arena testbed 23
Use-case diagram of the Arena testbed key generator 25
Structural diagram of the measurement environment 28

39

List of Tables

5.1
5.2
53
54

Attributes and version numbers of the measurement environment 27
Network traffic generated by CXF and SUDS invocation 28
Time needed for CXF and SUDS proxy initialization 29
Time needed for CXF and SUDS invocation 30

40

Abbreviations

CORBA
DCOM
HTTP
JKS
PEM
PHP
RPC
SOA
SOAP
SRP
TCP
TLS
UDDI
W3C
WSDL
XML

Component Object Request Broker Architecture
Distributed Component Object Model
Hypertext Transfer Protocol

Java Key Store

Privacy Enhanced Mail

PHP: Hypertext Preprocessor

Remote Procedure Call

Service-Oriented Architecture

Simple Object Access Protocol

Single Responsibility Principle

Transport Control Protocol

Transport Layer Security

Universal Description Discovery and Integration
World Wide Web Consortium

Web Services Description Language

Extensible Markup Language

41

	Kivonat
	Abstract
	Magyar nyelvű összefoglalás
	Introduction
	Service-Oriented Architecture and Web Services
	SOA history and principles
	Web Services
	SOAP and friends
	Advanced web services
	Introduction
	Security

	Existing Python SOA solutions
	About Python
	Language
	Runtime
	Libraries

	Python SOA solutions
	Introduction
	SOAPy
	Zolera SOAP Infrastructure
	soaplib / rpclib
	SUDS
	sec-wall
	Common problems

	Opportunities and internals of SUDS
	Introduction
	Internal structure
	Client proxy instantiation
	Instantiation of complex objects
	Service method invocation
	Document Object Model of SUDS

	Opportunities
	Current WS-Security implementation
	Plugin system

	Improving SUDS
	Completing the implementation of UsernameToken
	Implementing digital signatures – SudsSigner
	Internal structure
	Components used
	The Python component

	Testing and verification – Arena
	Internal structure
	Outline of processing
	Generation of keys
	Usage during the development

	Results
	Measurement
	Methodology
	Environment

	Analysis
	Network traffic
	Proxy initialization
	Invocation round-trip time

	Architectural differences
	Runtime environment
	Use of native components

	Summary
	Results summary
	Future development opportunities
	Short-term: taking advantage of HTTP keep-alive
	Mid-term: implementing XML encryption
	Long-term: wider cryptographic backend support

	Bibliography
	Appendix
	Availability of relevant source code
	SUDS
	SudsSigner
	PyXMLSec

	List of Figures
	List of Tables
	Abbreviations

